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Fractional quantum mechanics
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Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6

~Received 6 April 2000!

A path integral approach to quantum physics has been developed. Fractional path integrals over the paths of
the Lévy flights are defined. It is shown that if the fractality of the Brownian trajectories leads to standard
quantum and statistical mechanics, then the fractality of the Le´vy paths leads to fractional quantum mechanics
and fractional statistical mechanics. The fractional quantum and statistical mechanics have been developed via
our fractional path integral approach. A fractional generalization of the Schro¨dinger equation has been found.
A relationship between the energy and the momentum of the nonrelativistic quantum-mechanical particle has
been established. The equation for the fractional plane wave function has been obtained. We have derived a
free particle quantum-mechanical kernel using Fox’sH function. A fractional generalization of the Heisenberg
uncertainty relation has been established. Fractional statistical mechanics has been developed via the path
integral approach. A fractional generalization of the motion equation for the density matrix has been found.
The density matrix of a free particle has been expressed in terms of the Fox’sH function. We also discuss the
relationships between fractional and the well-known Feynman path integral approaches to quantum and sta-
tistical mechanics.

PACS number~s!: 05.40.Fb, 05.30.2d, 03.65.Db, 03.65.Sq
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I. INTRODUCTION

The term ‘‘fractal’’ was introduced into scientists’ lexico
by Mandelbrot@1#. Historically, the first example of a frac
tional physical object was Brownian motion, whose trajec
ries ~paths! are nondifferentiable, self-similar curves th
have a fractal dimension that is different from its topologic
dimension@1,2#. In quantum physics the first successful a
tempt to apply the fractality concept was the Feynman p
integral approach to quantum mechanics. Feynman
Hibbs @3# reformulated the nonrelativistic quantum mecha
ics as a path integral over Brownian paths. Thus
Feynman-Hibbs fractional background leads to stand
~nonfractional! quantum mechanics.

We develop an extension of a fractality concept in qu
tum physics. That is, we construct a fractional path integ
and formulate the fractional quantum mechanics@4# as a path
integral over the paths of the Le´vy flights.

The Lévy stochastic process is a natural generalization
the Brownian motion or the Wiener stochastic process@5,6#.
The foundation for this generalization is the theory of sta
probability distributions developed by Le´vy @7#. The most
fundamental property of the Le´vy distributions is the stabil-
ity in respect to addition, in accordance with the generaliz
central limit theorem. Thus, from the probability theory po
of view, the stable probability law is a generalization of t
well-known Gaussian law. The Le´vy processes are chara
terized by the Le´vy indexa, 0,a<2. At a52 we have the
Gaussian process or the process of the Brownian motion.
us note that the Le´vy process is widely used to model
variety of processes, such as turbulence@8#, chaotic dynam-
ics @9#, plasma physics@10#, financial dynamics@11#, biol-
ogy, and physiology@12#.

*Email addresses: nlaskin@rocketmail.com;
nlaskin@sce.carleton.ca
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As is well known, in the Gaussian case the path integ
approach to quantum mechanics allows one to reproduce
Schrödinger equation for the wave function. In the gene
case we derive the fractional generalization of the Sch¨-
dinger equation@see Eq.~28!#. The fractional generalization
of the Schro¨dinger equation includes the derivative of ord
a instead of the second (a52) derivative in the standard
Schrödinger equation. This is one of the reasons for the te
‘‘fractional quantum mechanics’’~FQM!.

The paper is organized as follows. In Sec. II we descr
two fractals:~i! a trajectory of the Brownian motion, and~ii !
a trajectory of the Le´vy flight. In Sec. III we define the frac-
tional path integrals in the coordinate and phase space
resentations. We develop the FQM via a path integral. I
shown in what way the FQM includes the standard one.
derive the free particle fractional quantum-mechanical pro
gator using Fox’sH function. The fractional dispersion rela
tion between the energy and the momentum of the nonr
tivistic fractional quantum mechanical particle is establish

In Sec. IV the fractional generalization of the Schro¨dinger
equation in terms of the quantum Riesz fractional derivat
is obtained. The fractional Hamilton operator is defined, a
its hermiticy is proven.

As a physical application of the developed fraction
quantum mechanics, a free particle quantum dynamic
studied in Sec. V. We introduce the Le´vy wave packet,
which is a fractional generalization of the well-know
Gaussian wave packet. Quantum-mechanical probab
densities in space and momentum representations are
rived. The fractional uncertainty relation is established. T
uncertainty relation can be considered as a fractional ge
alization of the Heisenberg uncertainty relation.

In Sec. VI we develop the fractional statistical mechan
~FSM! by means of the fractional path integral approac
The main point is go from imaginary time~in the framework
of the quantum-mechanical fractional path integral consid
ation! to ‘‘inverse temperature’’i t→\b, whereb51/kBT,
3135 ©2000 The American Physical Society
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3136 PRE 62NICK LASKIN
kB is Boltzmann’s constant,\ is Planck’s constant, andT is
the temperature. We have found an equation for the parti
function of the fractional statistical system. The fraction
density matrix for a free particle is expressed in analyti
form in terms of the Fox’sH function. We have derived the
new fractional differential equation@see Eq.~63!# for the
fractional density matrix. In the conclusion, we discuss
relationships between the fractional approach and the w
known Feynman path integral approach to quantum and
tistical mechanics.

II. FRACTALS

The relation between fractals and quantum~or statistical!
mechanics is easily observed in the framework of the Fe
man path integral formulation@3#. The background of the
Feynman approach to quantum mechanics is a path inte
over the Brownian paths. The Brownian motion was histo
cally the first example of the fractal in physics. Brownia
paths are nondifferentiable, self-similar curves whose fra
dimension is different from its topological dimension. Let
explain the fractal dimension with two examples of fracta
~i! the Brownian path, and~ii ! the trajectory of the Le´vy
flight.

~i! A mathematical model of the Brownian motion is th
Wiener stochastic processx(t) @5#. The probability density
pW(xtux0t0), that a stochastic processx(t) will be found atx
at time t under the condition that it starts att5t0 from
x(t0)5x0 , satisfies the diffusion equation

]pW~xtux0t0!

]t
5

s

2
¹2pW~xtux0t0!,

pW~xtux0t0!5d~x2x0!, ¹[
]

]x
,

the solution of which has the form

pW~xtux0t0![pW~x2x0 ;t2t0!

5
1

A2ps~ t2t0!
expH 2

~x2x0!2

2s~ t2t0!J , ~1!

wheres is the diffusion coefficient, andt.t0 .
Equation~1! implies that

~x2x0!2}s~ t2t0!. ~2!

This scaling relation between a length increment of
Wiener processDx5x2x0 and a time incrementDt5t2t0
allows one to find the fractal dimension of the Browni
path. Let us consider the length of the diffusion path betw
two given space-time points. We divide the given time int
val T into N slices, such asT5NDt. Then the space lengt
of the diffusion path is

L5NDx5
T

Dt
Dx5sT~Dx!21, ~3!

where the scaling relation@Eq. ~2!# was taken into account
The fractal dimension tells us about the length of the p
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when space resolution goes to zero,Dx→0. The fractional
dimensiondfractal may be introduced by@1,2#

L}~Dx!12dfractal,

where Dx→0. Letting Dx→0 in Eq. ~3!, and comparing
with the definition of the fractal dimensiondfractal, yields

dfractal
~Brownian!52. ~4!

Thus the fractal dimension of the Brownian path is 2.
~ii ! Another example of a fractal is the random process

the Lévy ‘‘flight’’ ~or the Lévy motion!. As discussed in Sec
I, the Lévy motion is a so-calleda-stable random process
and may be considered as a generalization of the Brown
motion. Thea-stable distribution is formed under the influ
ence of the sum of a large number of independent rand
factors. The probability densitypL(xtux0t0) of the Lévy
a-stable distribution has the form

pL~xtux0t0!5
1

2p E
2`

`

dk eik~x2x0! exp$2saukua~ t2t0!%,

~5!

wherea is the Lévy index 0,a<2, andsa is the general-
ized diffusion coefficient with the ‘‘physical’’ dimension
@sa#5cma sec21. The a-stable distribution with 0,a,2
possesses finite moments of orderm, m,a, but infinite mo-
ments for higher order. Note that the Gaussian probab
distribution is also a stable one (a52), and it possesse
moments of all orders.

We will further study a fractional quantum and statistic
mechanics, and it seems reasonable to suggest that ther
ists moments of first order or physical averages~for example,
an average momentum or space coordinate of quantum
ticle; see Secs. V and VI!. The requirement for the first mo
ment’s existence gives the restriction, 1,a<2.

Thea-stable Lévy distribution defined by Eq.~5! satisfies
the fractional diffusion equation

]pL~xtux0t0!

]t
5sa¹apL~xtux0t0!, ¹a[

]a

]xa ,

~6!
pL~xtux0t0!5d~x2x0!,

where¹a is the fractional Riesz derivative defined throug
its Fourier transform@13,14#:

¹ap~x,t !52
1

2p E
2`

`

dk eikxukuap̄~k,t !. ~7!

Here p(x,t) and p̄(k,t) are related to each other by th
Fourier transforms

p~x,t !5
1

2p E
2`

`

dk eikxp̄~k,t !,

p̄~k,t !5E
2`

`

dx e2 ikxp~x,t !.

Equation~5! implies that
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~x2x0!}„sa~ t2t0!…1/a, 1,a<2. ~8!

This scaling relation between a length increment of
Lévy processDx5x2x0 , and a time incrementDt5t2t0 ,
allows one to find the fractal dimension of a trajectory o
Lévy path. Let us consider the length of the Le´vy path be-
tween two given space-time points. Dividing the given tim
interval T into N slices, such asT5NDt, and taking into
account the scaling relation@Eq. ~8!#, we have

L5NDx5
T

Dt
Dx5DT~Dx!12a.

Letting Dx→0, and comparing with the definition of th
fractal dimensiondfractal @1,2#, yields

dfractal
~Lévy!5a, 1,a<2. ~9!

Thus the fractal dimension of the considered Le´vy path isa.

III. FRACTIONAL PATH INTEGRAL

If a particle at an initial timeta starts from a pointxa and
goes to a final pointxb at timetb , we will say simply that the
particle goes froma to b, and its trajectory~path! x(t) will
have the property thatx(ta)5xa andx(tb)5xb . In quantum
mechanics, then, we will have a quantum-mechanical am
tude, often called a kernel, which we may wri
KF(xbtbuxata), which we use to get from the pointa to the
point b. This will be the sum over all the trajectories that g
between the end points, and of a contribution from each
we have a quantum particle moving in the potentialV(x)
then the quantum-mechanical amplitudeKF(xbtbuxata) may
be written as@3#

KF~xbtbuxata!5E
x~ ta!5xa

x~ tb!5xbDFeynmanx~t!

3expH 2
i

\ E
ta

tb
dt V„x~t!…J , ~10!

whereV„x(t)… is the potential energy as a functional of
particle pathx(t), and the Feynman path integral measure
defined as

E
x~ ta!5xa

x~ tb!5xbDFeynmanx~t!¯

5 lim
N→`

E
2`

`

dx1 ...dxN21S 2p i\«

m D 2N/2

3)
j 51

N

expH im

2\«
~xj2xj 21!2J¯ , ~11!

herem is the mass of the quantum-mechanical particle,\ is
the Planck’s constant,x05xa , xN5xb , and«5(tb2ta)/N.
The Feynman path integral measure is generated by the
cess of the Brownian motion. Indeed, Eq.~11! implies

~xj2xj 21!}S \

mD 1/2

~Dt !1/2.
e

li-

If

s

ro-

This is the typical relation between the space displa
ment and the time scale for the Brownian path. This scal
relation between a length increment (xj2xj 21) and a time
incrementDt implies that the fractal dimension of the Fe
nman’s path isdfractal

~Feynman!52. As is well known, the definition
given by Eq.~11! leads to standard quantum mechanics. W
conclude that the Feynman-Hibbs fractional backgrou
leads to standard~nonfractional! quantum mechanics@3#.

We propose the fractional quantum mechanics based
the fractional path integral

KL~xbtbuxata!5E
x~ ta!5xa

x~ tb!5xbDx~t!expH 2
i

\ E
ta

tb
dt V„x~t!…J ,

~12!

whereV@x(t)# is the potential energy as a functional of th
Lévy particle path, and the fractional path integral measur
defined as

E
x~ ta!5xa

x~ tb!5xbDx~t!¯5 lim
N→`

E
2`

`

dx1 ...dxN21\2N

3S iD a«

\ D 2N/a

)
j 51

N

La

3H 1

\ S \

iD a« D 1/a

uxj2xj 21uJ¯ ,

~13!

whereDa is the generalized ‘‘fractional quantum diffusio
coefficient,’’ the physical dimension of which is@Da#
5erg12a cma sec2a, \ denotes Planck’s constant,x05xa ,
xN5xb , «5(tb2ta)/N, and the Le´vy distribution function
La is expressed in terms of Fox’sH function @15–17#:

\21S Dat

\ D 21/a

LaH 1

\ S \

Dat D
1/a

uxuJ
5

1

auxu
H2,2

1,1F1

\ S \

Dat D
1/a

uxuu
~1,1!,~1,

1
2 !

~1,1/a!,~1,
1
2 !G . ~14!

Here a is the Lévy index and, as mentioned in Sec. II, w
consider the case when 1,a<2.

The functional measure defined by Eq.~13! is generated
by the Lévy flights stochastic process. We find from Eq.~13!
that the scaling relation between a length incrementxj
2xj 21) and a time incrementDt has a fractional form

uxj2xj 21u}~\a21Da!1/a~Dt !1/a.

This scaling relation implies that the fractal dimension
the Lévy path isdfractal

~Lévy!5a. So, in the general case, a 1,a
,2 Lévy fractional background leads to fractional quantu
mechanics. Equations~12!–~14! define the new fractiona
quantum mechanics via the fractional path integral.

As a physical application of the developed fractional pa
integral approach let us calculate the free particle ker
KL

(0)(xbtbuxata), and compare it with the Feynman free pa
ticle kernelKF

(0)(xbtbuxata). For the free particleV(x)50,
and Eqs.~12! and ~13! yields
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KL
~0!~xbtbuxata!5E

x~ ta!5xa

x~ tb!5xbDx~t!31

5\21S iD a~ tb2ta!

\ D 21/a

3LaH 1

\ S \

iD a~ tb2ta! D
1/a

uxb2xauJ .

~15!

It is known that ata52 the Lévy distribution is trans-
formed to a Gaussian, and the Le´vy flight process is trans
formed to the process of Brownian motion. Equation~15!, in
accordance with the definition given by Eq.~14! and the
properties of the Fox’s functionH2,2

1,1 at a52 ~see Refs.@16#,
@17#! is transformed to a Feynman free particle kernel@see
Eq. ~3-3! of Ref. @3##

KF
~0!~xbtbuxata!5S 2p i\~ tb2ta!

m D 21/2

expH im~xb2xa!2

2\~ tb2ta! J .

~16!

Thus the general fractional@Eq. ~15!# includes, as a particu
lar, a Gaussian case ata52, the Feynman propagator.

In terms of a Fourier integral~momentum representation!,
the fractional kernelKL

(0)(xbtbuxata) is written as

KL
~0!~xbtbuxata!5

1

2p\ E
2`

`

dp expH i
p~xb2xa!

\

2 i
Da~ tb2ta!upua

\ J , ~17!

while the Eq.~16! in the momentum representation has t
form

KF
~0!~xbtbuxata!5

1

2p\ E
2`

`

dp expH i
p~xb2xa!

\

2 i
p2~ tb2ta!u

2m\ J . ~18!

We see from Eq.~17! that the energyEp of the fractional
quantum mechanical particle with momentump is given by

Ep5Daupua. ~19!

This is a dispersion relation for the nonrelativistic fra
tional quantum-mechanical particle. The comparison of
Eqs. ~17! and ~18! allows one to conclude that ata52 we
should putD251/2m. Then Eq.~19! is transformed to the
standard nonrelativistic equationEp5p2/2m.

Using Eq. ~17!, we can define the fractional functiona
measure in the phase space representation by
e

E
x~ ta!5xa

x~ tb!5xb
Dx~t!E Dp~t!¯

5 lim
N→`

E
2`

`

dx1 ...dxN21

1

~2p\!N

3E
2`

`

dp1 ...dpN expH i
p1~x12xa!

\
2 i

Da«up1ua

\ J
3¯3expH i

pN~xb2xN21!

\
2 i

Da«upNua

\ J¯ ,

~20!

here«5(tb2ta)/N. Then the kernelKL(xbtbuxata), defined
by Eq. ~12!, can be written as

KL~xbtbuxata!5 lim
N→`

E
2`

`

dx1 ...dxN21

1

~2p\!N

3E
2`

`

dp1 ...dpN expH i

\ (
j 51

N

pj~xj2xj 21!J
3expH 2

i

\
Da«(

j 51

N

upj ua2
i

\
«(

j 51

N

V~xj !J .

In the continuum limitN→` and«→0, we have

KL~xbtbuxata!5E
x~ ta!5xa

x~ tb!5xb
Dx~t!E Dp~t!

3expH i

\ E
ta

tb
dt@p~t!ẋ~t!

2Ha„p~t!,x~t!…#J , ~21!

where the phase space path integ
*x(ta)5xa

x(tb)5xbDx(t)*Dp(t)... isgiven by Eq.~20!, ẋ denotes the

time derivative,Ha is the fractional Hamiltonian

Ha~p,x!5Daupua1V~x! ~22!

with the replacementsp→p(t) and x→x(t), and
$p(t),x(t)% is the particle trajectory in phase space. We w
discuss the hermiticity property of the fractional Hamiltoni
Ha in Sec. IV.

The exponential in Eq. ~21! can be written as
exp$(i/\)Sa(p,x)% if we introduce the fractional canonical ac
tion for the trajectory$p(t),x(t)% in phase space:

Sa~p,x!5E
ta

tb
dt„p~t!ẋ~t!…2Ha„p~t!,x~t!…. ~23!

Since the coordinatesx0 and xN in definition ~20! are
fixed at their initial and final pointsx05xa andxN5xb , all
possible trajectories in Eq.~23! satisfy the boundary condi
tions x(tb)5xb and x(ta)5xa . We see that the definition
given by Eq.~20! includes one morepj integral thanxj in-
tegral. Indeed, whilex0 and xN are held fixed and thexj
integrals are done forj 51,...,N21, each incrementxj
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2xj21 is accompanied by onepj integral for j 51,...,N. The
above observed asymmetry is a consequence of the parti
boundary condition. That is, the end points are fixed in
sition ~coordinate! space. There exists the possibility of pr
ceeding in a conjugate way, keeping the initialpa and final
pb momenta fixed. The associated kernel can be derived
ing through the same steps as before, but working in
momentum representation~see, for example, Ref.@18#!.

Taking into account Eq.~17!, it is easy to check directly
on the consistency condition

KL
~0!~xbtbuxata!5E

2`

`

dx8KL
~0!~xbtbux8t8!KL

~0!~x8t8uxata!.

This is a special case of the general fractional quantu
mechanical rule: amplitudes for events occurring in succ
sion in time multiply

KL~xbtbuxata!5E
2`

`

dx8KL~xbtbux8t8!KL~x8t8uxata!.

~24!

IV. FRACTIONAL SCHRO¨ DINGER EQUATION

The kernelKL(xbtbuxata), which is defined by Eq.~13!,
describes the evolution of the fractional quantum-mechan
system

c f~xb ,tb!5E
2`

`

dxaKL~xbtbuxata!c i~xa ,ta!, ~25!

wherec i(xa ,ta) is the fractional wave function of the initia
~at t5ta! state, andc f(xb ,tb) is the fractional wave function
of the final ~at t5tb! state.

In order to obtain the differential equation for the fra
tional wave functionc(x,t), we apply Eq.~25! in the special
case that the timetb differs only by an infinitesimal interva
« from ta :

c~x,t1«!5E
2`

`

dy KL~x,t1«uy,t !c~y,t !.

Using Feynman’s approximation * t
t1tdt V„x(t)…

.«V@(x1y)/2# and the definition given by Eq.~13!, we
have

c~x,t1«!5E
2`

`

dy
1

2p\ E
2`

`

dp expH i
p~y2x!

\

2 i
Da«upua

\
2

i

\
«VS x1y

2 D J c~y,t !.

We may expand the left- and right-hand sides in power
ries:
lar
-

o-
e

-
s-

al

-

c~x,t !1«
]c~x,t !

]t
5E

2`

`

dy
1

2p\ E
2`

`

dp ei @py2x!/\]

3S 12 i
Da«upua

\ D
3F12

i

\
«VS x1y

2 D Gc~y,t !. ~26!

Then, taking into account the definitions of the Fourier tra
forms,

c~x,t !5
1

2p\ E
2`

`

dp ei ~px/\!w~p,t !,

w~p,t !5E
2`

`

dp e2 i ~px/\!c~x,t !,

and introducing the quantum Riesz fractional derivat
(\¹)a

~\¹!ac~x,t !52
1

2p\ E
2`

`

dp ei ~px/\!upuaw~p,t !,

~27!

we obtain, from Eq.~26!,

c~x,t !1«
]c~x,t !

]t
5c~x,t !1 i

Da«

\
~\¹!ac~x,t !

2
i

\
«V~x!c~x,t !.

This will be true to order« if c(x,t) satisfies the differentia
equation

i\
]c

]t
52Da~\¹!ac1V~x!c. ~28!

This is the fractional Schro¨dinger equation for a fractiona
quantum particle moving in one dimension.

Equation~28! may be rewritten in operator form, name

i\
]c

]t
5Hac, ~29!

whereHa is the fractional Hamiltonian operator:

Ha52Da~\¹!a1V~x!. ~30!

Using definition~27! one may rewrite the fractional Hamil
tonianHa in the form given by Eq.~23!.

The HamiltonianHa is the Hermitian operator in space
with a scalar product

~f,x!5E
2`

`

dx f* ~x,t !x~x,t !.

To prove the hermiticity ofHa , let us note that in accor
dance with the definition of the quantum Riesz fraction
derivative given by Eq.~27! there exists the integration-b
parts formula
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„f,~\¹!ax…5„~\¹!af,x…. ~31!

The average energy of fractional quantum system, w
HamiltonianHa , is

Ea5E
2`

`

dx c* ~x,t !Hac~x,t !. ~32!

Taking into account Eq.~31! we have

Ea5E
2`

`

dx c* ~x,t !Hac~x,t !

5E
2`

`

dx„Ha
1c~x,t !…* c~x,t !5Ea* ,

and, as a physical consequence, the energy of a syste
real. Thus the fractional HamiltonianHa defined by Eq.~30!
is the Hermitian or self-adjoint operator

~Ha
1f,x!5~f,Hax!.

Since the kernelKL(xbtbuxata), thought of as a function
of variablesxb and tb , is a special wave function~for a
particle which starts atxa and ta!, we see thatKL must also
satisfy a fractional Schro¨dinger equation. Thus, for the quan
tum system described by the fractional Hamiltonian@Eq.
~30!#, we have

i\
]

]tb
KL~xbtbuxata!52Da~\¹b!aKL~xbtbuxata!

1V~xb!KL~xbtbuxata!, tb.ta ,

where the low index ‘‘b’’ means that the quantum fractiona
derivative acts on the variablexb .

V. FREE PARTICLE. FRACTIONAL UNCERTAINTY
RELATION

As a first physical application of the developed FQM a
the fractional Schro¨dinger equation~28!, let us consider a
free particle. The fractional Schro¨dinger equation for a free
particle has the fractional plane wave solution

c~x,t !5C expH i
px

\
2 i

Daupuat

\ J , ~33!

whereC is a normalization constant. In the special Gauss
case~a52 andD251/2m!, Eq. ~33! gives a plane wave o
the standard quantum mechanics. Localized states are
tained by a superposition of plane waves:

cL~x,t !5
1

2p\ E
2`

`

dp w~p!expH i
px

\
2 i

Daupuat

\ J .

~34!

Here,w(p) is the ‘‘weight’’ function. We will study Eq.~34!
for a one-dimensional fractional Le´vy wave packet,
h

is

n

b-

cL~x,t !5
An

2p\ E
2`

`

dp expH 2
up2p0unl n

2\n J
3expH i

px

\
2 i

Daupuat

\ J , ~35!

with the ‘‘weight’’ function

w~p!5An expH 2
up2p0unl n

2\n J , p0.0 n<a,

whereAn is a constant,l is a space scale, anda is the Lévy
index 1,a<2.

In the following we will be interested in the probabilit
densityr(x,t) that a particle occupies a positionx, and the
probability densityw(p,t) that a particle has particular va
uesp of the momentum. The wave functioncL(x,t), defined
by Eq. ~35!, gives the probability densityr(x,t):

r~x,t !5ucL~x,t !u2

5
An

2

~2p\!2 E
2`

`

dp1 dp2

3expH 2
up12p0unl n

2\n J
3expH 2

up22p0unl n

2\n J
3expH i

~p12p2!x

\
2 i

Da~ up1ua2up2ua!t

\ J .

~36!

Now, we can fix the factorAn such that *dxr(x,t)
5*dxucL(x,t)u251, with the result

An5S pn l

GS 1

n D D 1/2

, ~37!

whereG~1/n! is theg function.1 The relationship between th
probability densitiesr(x,t) andw(p,t) may be derived from
the relationship between fractional wave functions in t
spacecL(x,t) and momentumf(p,t) representations,

cL~x,t !5
1

2p\ E
2`

`

dp expH i
px

\ J f~p,t !, ~38!

where we have

f~p,t !5expH 2
up2p0unl n

2\n J expH 2 i
Daupuat

\ J . ~39!

Note thatf(p,t) satisfies the fractional free particle Schr¨-
dinger equation in the momentum representation

1The g function G(z) has the familiar integral representatio
G(z)5*0

`dt tz21e2t, Rez.0.
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i\
]f~p,t !

]t
5Daupuaf~p,t !,

f~p,0!5expH 2
up2p0unl n

2\n J .

One then obtains

E
2`

`

dxucL~x,t !u25
An

2

~2p\!2 E
2`

`

dxE
2`

`

dp dp8

3expH i
~p2p8!x

\ J f~p,t !f* ~p,t !

5
An

2

~2p\!
E

2`

`

dpuf~p,t !u251, ~40!

because of

1

~2p\!
E

2`

`

dx expH i
~p2p8!x

\ J 5d~p2p8!.

Equation~40! suggests, for the probability density in mo
mentum space, the following definition:

w~p,t !5
An

2

2p\
uf~p,t !u2. ~41!

Thus, for the momentum probability densityw(p,t), we
have

w~p,t ![w~p!5
n l

2\GS 1

n D expH 2
up2p0unl n

\n J . ~42!

This is time independent, since we are considering a
particle.

In coordinate space the probability of finding a particle
the positionx in the ‘‘box’’ dx is given byr(x,t)dx. Corre-
spondingly, the probability of finding a particle with mome
tum p in dp is represented byw(p,t)dp.

We are also interested in the average values and
mean-m deviations of position and momentum for th
present probability densities defined by Eqs.~36! and ~42!.
The expectation value of the space position can be calcul
as

^x&5E
2`

`

dx xr~x,t !

5
An

2

~2p\!2 E
2`

`

dx xE
2`

`

dp dp8

3expH i
~p2p8!x

\ J f~p,t !f* ~p8,t !. ~43!

Making the substitution

x→ \

i

]

]p
,

e

t

he

ed

we will have

^x&5
An

2

~2p\!2 E
2`

`

dxE
2`

`

dp dp8

3S \

i

]

]p
expH i

~p2p8!x

\ J Df~p,t !f* ~p8,t !.

Integrating by parts gives

^x&52
An

2

~2p\!

\

i E2`

`

dpS l n

\n

]

]p
up2p0un

2 i
Dat

\

]

]p
upuaDexpH 2

up2p0unl n

\n J .

It is easy to check that the first term in the brackets v
ishes, and we find that the position expectation value is

^x&5aDatp0
a21. ~44!

Using the dispersion relation given by Eq.~19!, we may
rewrite ^x& as

^x&5
]Ep

]p U
p5p0

t5v0t. ~45!

Here,v05(]Ep /]p)up5p0
is the group velocity of the wave

packet. We see that the maximum of the Le´vy wave packet
@Eq. ~35!# moves with the group velocityv0 like a classical
particle.

The mean-m deviations (m,n) of space position̂uDxum&
is defined by

^uDxum&5Šux2^x&um‹5E
2`

`

dxux2^x&umr~x,t !

5
An

2

~2p\!2 E
2`

`

dxux2^x&um

3E
2`

`

dp dp8expH i
~p2p8!x

\ J
3f~p,t !f* ~p8,t !.

This equation can be rewitten as

^uDxum&5
l m

2
N~a,m,n;t,h0!, ~46!

where we introduce the following notations:

N~a,m,n;t,h0!5
21/nn

4pGS 1

n D E2`

`

dzuzumE
2`

`

dh

3E
2`

`

dh8exp$ i ~h2h8!~z1ath0
a21!%

3exp$2 i t~ uhua2uh8ua!2uh

2h0un2uh82h0un% ~47!
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and

h05
p0l

21/n\
, t5

Dat

\ S 21/n\

l D a

So, for them-root of the mean-m deviation of position
~space position uncertainty for the Le´vy wave packet!, we
find

^uDxum&1/m5
l

21/m N1/m~a,m,n;t,h0!. ~48!

Further, with Eq.~42!, the expectation value of the mome
tum is calculated as

^p&5E
2`

`

dp pw~p!5E
2`

`

dp~p2p0!w~p!

1E
2`

`

dp p0w~p!. ~49!

The first integral vanishes, sincew(p) is an even function of
(p2p0), and the momentum expectation value is

^p&5p0 . ~50!

The mean-m deviation of the momentum is

^uDpum&5E
2`

`

dpup2^p&umw~p!5 S \

l D
m GS m11

n D
GS 1

n D .

~51!

Then the momentum uncertainty~the m-root of the mean-m
deviation of momentum! is

^uDpum&1/m5
\

l S GS m11

n D
GS 1

n D D 1/m

. ~52!

Together with Eq.~48!, this leads to

^uDxum&1/m^uDpum&1/m

5
\

21/m S GS m11

n D
GS 1

n D D 1/m

N 1/m~a,m,n;t,h0!,

m,n<a, ~53!

whereN (a,m,n,t,h0) is given by Eq.~47!.
This relation implies that a spatially extended Le´vy ~or

fractional! wave packet corresponds to a narrow moment
spectrum, whereas a sharp Le´vy wave packet corresponds t
a broad momentum spectrum.

SinceN(a,m,n;t,h0).1 andG(m11/n)/G(1/n)'1/n,
Eq. ~53! becomes
^uDxum&1/m^uDpum&1/m.
\

~2a!1/m , m,a, 1,a<2,

~54!

with n5a.
Note that for the special casea52 we can setm5a52.

Thus, for the standard quantum mechanics,~a52! with the
definition of the uncertainty as the square-root of the me
square deviation, Eq.~54! was established by Heisenbe
@19# ~see, for instance, Ref.@20#!. The uncertainty relation
given by Eq.~54! can be considered as fractional generaliz
tion of the well known Heisenberg uncertainty relation
Thus Eqs.~12!–~15!, ~21!–~24!, ~28!, ~30!, and~54! are the
basic equations for the new FQM.

VI. FRACTIONAL STATISTICAL MECHANICS

In order to develop the fractional statistical mechan
~FSM!, let us go in the previous quantum-mechanical co
sideration from imaginary time to ‘‘inverse temperature’’b
51/kBT, where kB is Boltzmann’s constant andT is the
temperature,i t→\b. In the framework of the traditiona
functional approach to the statistical mechanics, we have
functional over the Wiener measure@3,18,21#,

r~x,bux0!5E
x~0!5x0

x~b!5x
DWiener x~u!expH 2

1

\ E
0

\b

duV„x~u!…J
~55!

wherer(x,bux0) is the density matrix of the statistical sys
tem in the external fieldV(x), and the Wiener measure@6#
generated by the process of the Brownian motion is given

E
x~0!5x0

x~b!5x
DWiener x~u!¯5 lim

N→`
E dx1 ...dxN21S 2p\§

m D 2N/2

3)
j 51

N

expH 2
m

2\§

3~xj2xj 21!2J¯ , ~56!

here§5\b/N andxN5x.
The FSM deals with Le´vy or fractional density matrix

rL(x,bux0), which is defined by

rL~x,bux0!5E
x~0!5x0

x~b!5x
DLévyx~u!expH 2

1

\ E
0

\b

du V„x~u!…J
~57!

where we introduce the new fractional functional meas
~we will call this measure by the Le´vy functional measure!
by

E
x~0!5x0

x~b!5x
DLévyx~u!¯5 lim

N→`
E dx1 ...dxN21

3~\a21Da§!2N/a

3)
j 51

N

LaH uxj2xj 21u
~\a21Da§!1/aJ¯ , ~58!
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here§5\b/N, xN5x, and the Le´vy functionLa is given by
Eq. ~14!. Equations~57! and~58! define the fractional quan
tum statistics via new Le´vy path integral.

The partition functionZ or free energyF, Z5e2bF is
expressed as a trace of the density matrixrL(x,bux0):

Z5e2bF5E dx rL~x,bux!

5E dxE
x~0!5x~b!5x

DLévyx~u!

3expH 2
1

\ E
0

\b

duV„x~u!…J .

With the definition ~20! the equation for the partition
function becomes

Z5e2bF5E dxE
x~0!5x~b!5x

Dx~t!E Dp~t!

3expH 2
1

\ E
0

\b

du$2 ip~u!ẋ~u!

1Ha„p~u!,x~u!…%J , ~59!

where the fractional HamiltonianHa(p,x) has form of Eq.
~22!, andp(u) andx(u) may be considered as paths runni
along on ‘‘imaginary time axis,’’u5 i t . The exponential ex-
pression of Eq.~59! is very similar to the fractional canonica
action @Eq. ~23!#. Since it governs the fractional quantum
statistical path integrals, it may be called the fraction
quantum-statistical action or fractional Euclidean action,
dicated~following Ref. @18#! by the superscript (e),

Sa
~e!~p,x!5E

0

\b

du$2 ip~u!ẋ~u!1Ha„p~u!,x~u!…%.

The parameteru is not the true time in any sense. It is ju
a parameter in an expression for the density matrix~see, for
instance, Ref.@3#!. Let us call u the ‘‘time,’’ leaving the
quotation marks to remind us that it is not real time~although
u does have the dimension of time!. Likewise x(u) will be
called the ‘‘coordinate’’ andp(u) the ‘‘momentum.’’ Then
Eq. ~57! may be interpreted in the following way.

Consider all possible paths by which the system can tra
between the initialx(0) and finalx(b) configurations in the
‘‘time’’ \b. The fractional density matrixrL is a path inte-
gral over all possible paths, the contribution from a particu
path being the ‘‘time’’ integral of the canonical action@con-
sidered as the functional of the pathsp(u) and x(u) in the
phase space# divided by\. The partition function is derived
by integrating over only those paths for which initialx(0)
and finalx(b) configurations are the same, and after that
integrate over all possible initial~or final! configurations.

The fractional density matrixrL
(0)(x,bux0) of a free par-

ticle (V50) can be written as
l
-

el

r

e

rL
~0!~x,bux0!5

1

2p\ E
2`

`

dp expH i
p~x2x0!

\
2bDaupuaJ

5
1

aux2x0u
H2,2

1,1F ux2x0u
\~Dab!1/aU~1,1/a!,~1,1

2 !

~1,1!,~1,1
2 !

G ,

~60!

whereH2,2
1,1 is Fox’s H function ~see Refs.@15–17#!. For a

linear system of space scaleV the trace of Eq.~60! leads to

Z5e2bF5E
V

dx rL~x,bux!

5
V

2p\ E
2`

`

dp exp$2bDaupua%

5
V

2p\

1

~bDa!1/a GS 1

a D .

When a52 and D251/2m, Eq. ~60! gives the well-
known density matrix for a one-dimensional free partic
~see Eq.~10–46! of Ref. @3# or Eq. ~2–61! of Ref. @21#!:

r~0!~x,bux0!5S m

2p\2b D 1/2

expH 2
m

2\2b
~x2x0!2J .

~61!

The Fourier representationrL
(0)(p,bup8) of the fractional

density matrixrL
(0)(x,bux0), defined by

rL
~0!~p,bup8!5E

2`

`

dx dx0 rL
~0!~x,bux0!

3expH 2
i

\
~px2p8x0!J

can be rewritten as

rL
~0!~p,bup8!52p\d~p2p8!e2bDaupua.

In order to obtain a formula for the fractional partitio
function in the limit of fractional classical mechanics, let
study the case when\b is small. Repeating consider, simila
to Feynman’s,~see Chap. 10 of Ref.@3#! for the fractional
density matrixrL(x,bux0) we can write the equation

rL~x,bux0!5e2bV~x0!
1

2p\

3E
2`

`

dp expH i
p~x2x0!

\
2bDaupuaJ .

Then the partition function in the limit of classical mechani
becomes

Z5E
2`

`

dx rL~x,bux!5

GS 1

a D
2p\~bDa!1/a E

2`

`

dx e2bV~x!.

~62!

This simple form for the partition function is only an ap
proximation, valid if the particles of the system cannot wa
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der very far from their initial positions in the time\b. The
limit on the distance which the particles can wander bef
the approximation breaks down can be estimated in Eq.~60!.
We see that if the final point differs from the initial point b
as much as

Dx.\~bDa!1/a5\S Da

kTD 1/a

,

the exponential function of Eq.~60! becomes greatly re
duced. From this, we can infer only intermediate points
paths which do not contribute greatly to the path integra
Eq. ~60!. If the potentialV(x) does not alter very much asx
moves over this distance, then the fractional classical sta
tical mechanics is valid.

The density matrixrL(x,bux0) obeys the fractional dif-
ferential equations

2
]rL~x,bux0!

]b
52Da~\¹x!

arL~x,bux0!

1V~x!rL~x,bux0! ~63!

or

2
]rL~x,bux0!

]b
5HarL~x,bux0!, rL~x,0ux0!5d~x2x0!,

where the fractional HamiltonianHa is defined by Eq.~30!.
Thus Eqs.~57!–~60! and~63! are the basic equations for ou
FSM.

VII. CONCLUSION

We have developed a path integral approach to FQM
FSM. The approach is based on functional measures ge
ated by the stochastic process of the Le´vy flight whose path
fractional dimension is different from the fractional dime
sion of the Brownian path. As shown by Feynman a
Hibbs, the fractality~the difference between topological an
fractional dimensions! of the Brownian paths leads to sta
dard ~nonfractional! quantum mechanics and statistics. T
fractality of the Lévy paths as shown in the present pap
ys
e

n
f

is-

d
er-

d

r

leads to fractional quantum mechanics and statistics. T
we develop a fractional background which leads to fractio
~nonstandard! quantum and statistical mechanics.

The Feynman quantum-mechanical and Wiener statist
mechanical path integrals are generalized, and as a resu
have fractional quantum-mechanical and fractional statist
mechanical path integrals, respectively. A fractional gen
alization of the Schro¨dinger equation has been derived usi
the definition of the quantum Riesz fractional derivative
We have defined the fractional Hamilton operator a
proved its hermiticity. The relation between the energy a
the momentum of a nonrelativistic fractional quantum
mechanical particle has been found. The equation for
fractional plane wave function was obtained. We have
rived a free particle quantum-mechanical kernel using Fo
H function. In the particular Gaussian case (a52), the frac-
tional kernel takes the form of Feynman’s well-known ke
nel. For the Le´vy wave packet the position and momentu
uncertainties were calculated analytically. The fraction
generalization of the Heisenberg uncertainty relation
been established.

Equations~12!–~15!, ~21!–~24!, ~28!, ~30!, and ~54! are
the basic equations for our FQM. Following the general r
and replacing byi t→\b, we obtain the path integral formu
lation of the FSM. An equation for the fractional partitio
function has been derived, and the fractional quantu
statistical action introduced into the quantum statistical m
chanics. The density matrix of a free particle has been
pressed analytically in terms of Fox’sH function. It is shown
that Eq. ~60! for the fractional density matrix in a specia
Gaussian case (a52) gives the well-known equation for th
density matrix of a free particle in one dimension~see Eq.
~2–61! of Ref. @21#!. We have found the formula for the
fractional partition function in the limit of fractional classica
mechanics, and discuss the validity of this formula. A fra
tional differential equation of motion of density matrix ha
been established. Equations~57!–~60! and~63! are the basic
equations for our FSM. We finally mention that the dev
oped fractional path integral approach to quantum and sta
tical mechanics can easily be generalized to ad-dimensional
consideration, using ad-dimensional generalization of th
fractional and the Le´vy path integral measures.
er,
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